SU(3) classification of p-wave $\eta \pi$ and $\eta^{\prime} \pi$ systems

S.U. Chung ${ }^{1}$, E. Klempt ${ }^{2}$, a , and J.G. Körner ${ }^{3}$
${ }^{1}$ Physics Department, Brookhaven National Laboratory ${ }^{\text {b }}$, Upton, Long Island, NY 11973, USA
${ }^{2}$ Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, Nußallee 12, D-53115 Bonn, Germany
${ }^{3}$ Institut für Physik, Universität Mainz, Staudingerweg 7, D-55099 Mainz, Germany

Received: 27 March 2002 / Revised version: 8 August 2002 /
Published online: 10 December 2002 - © Società Italiana di Fisica / Springer-Verlag 2002
Communicated by V. Vento

Abstract

An exotic meson, the $\pi_{1}(1400)$ with $J^{P C}=1^{-+}$, has been seen to decay into a p-wave $\eta \pi$ system. If this decay conserves flavor $S U(3)$, then it can be shown that this exotic meson must be a four-quark state $(q \bar{q}+q \bar{q})$ belonging to a flavor $\mathbf{1 0} \oplus \overline{\mathbf{1 0}}$ representation of $S U(3)$. In contrast, the $\pi_{1}(1600)$ with a substantial decay mode into $\eta^{\prime} \pi$ is likely to be a member of a flavor octet.

PACS. 14.40.Gx Mesons with $S=C=B=0$, mass 2.5 GeV (including quarkonia)

An exotic meson, the $\pi_{1}(1400)$ with $I^{G}\left(J^{P C}\right)=$ $1^{-}\left(1^{-+}\right)$, has been seen to decay into a p-wave $\eta \pi$ system $[1,2]$. So far this is the only decay mode known for the exotic meson. The purpose of this paper is to show that a p-wave $\eta \pi$ system belongs to a flavor $\mathbf{1 0} \oplus \overline{\mathbf{1 0}}$ representation by the requirement of Bose symmetrization, if the η-meson is assumed to be a pure member of the pion octet. This implies that, in the limit of flavor $S U(3)$ conservation in its decay, $\pi_{1}(1400)$ cannot be a gluonic hybrid $(q \bar{q}+g)$ but instead it must belong to a family of four-quark states $(q \bar{q}+q \bar{q})$. In this paper we give, for the first time, a complete set of normalized wave functions corresponding to the family of $\mathbf{1 0} \oplus \overline{\mathbf{1 0}}$ coupling to two members of the ground state ${ }^{1} S_{0}$. We then explore the consequences of this assignment and suggest experiments which could support or negate this conjecture.

We start the discussion by recalling that a second exotic meson, the $\pi_{1}(1600)$ with $I^{G}\left(J^{P C}\right)=1^{-}\left(1^{-+}\right)$, is reported to have a substantial decay mode into $\eta^{\prime} \pi[3-5]$. The branching ratios are [4]

$$
\begin{gather*}
B\left[b_{1}(1235) \pi\right]: B\left[\eta^{\prime}(958) \pi\right]: B[\rho(770) \pi]= \\
1: 1.0 \pm 0.3: 1.5 \pm 0.5 . \tag{1}
\end{gather*}
$$

A search for a $\eta \pi$ decay mode of the $\pi_{1}(1600)$ has not been successful.

The first immediate question is: why does the $\pi_{1}(1600)$ not decay into $\eta \pi$ even though it decays into $\eta^{\prime} \pi$ and even though the phase space for the former decay mode is much

[^0]larger. Sometimes it is argued that the strong coupling to $\eta^{\prime} \pi$ is due to the "gluish" nature of the η^{\prime} and points to a hybrid interpretation of the $\pi_{1}(1600)$. We do not share this view. Instead, we show that a meson belonging to a flavor octet cannot decay into $\eta \pi$.

First we assume that the η-meson is the pure isoscalar member of the ground-state ${ }^{1} S_{0}$ flavor- $S U(3)$ octet, i.e. the other members are the isovector π and the isodoublets K and \bar{K}. In this scheme then, one has assumed that the η^{\prime} is a pure $S U(3)$ singlet. The exotic quantum numbers enforce the $\eta \pi$ system to be in a relative p wave; hence the $\eta \pi$ system must belong to the antisymmetric octet $\mathbf{8}_{\mathbf{2}}$. This is, however, not possible. To show this, one needs to examine its nonstrange neutral members [6], as given in table 1 (for a comment on the particle names used, see the text following the introduction of table 3).

It is clear that they come with an eigenvalue of $C=$ -1 , and so they cannot couple to $\pi \eta$. Another way to explain this is to note that, for an antisymmetric $\pi \eta$ to belong to an octet, the wave function for its isosinglet partner must also be antisymmetric, but such a wave function can only come with $C=-1$ as shown in table 1 . An antisymmetric $\pi \eta$ can appear in the $\mathbf{1 0} \oplus \overline{\mathbf{1 0}}$ representation, because it is devoid of an isosinglet member.

A summary of the various $J^{P C}$'s allowed for all the representations in $\mathbf{8} \otimes \mathbf{8}$ is given in table 2 .

We conclude that the absence of the $\eta \pi$-decay mode of the $\pi_{1}(1600)$ is due to its being a member of an octet of flavor $S U(3)$. This conclusion holds, whatever its constituent-quark content may be, hybrid or four-quark system.

Now we allow for deviations from ideal mixing in the pseudoscalar meson nonet. Then, the $\pi_{1}(1400)$ has a small

Table 1. Antisymmetric octet ($\mathbf{8}_{2}$).

$J^{P C}$	S	I	I_{3}	Q	Name	Wave functions
1^{--}	0	1	+1	+1	σ_{-}^{+}	$\sqrt{\frac{1}{3}}\left(\pi^{+} \pi^{0}-\pi^{0} \pi^{+}\right)-\sqrt{\frac{1}{6}}\left(\bar{K}^{0} K^{+}-K^{+} \bar{K}^{0}\right)$
			0	0	σ_{-}^{0}	$\sqrt{\frac{1}{3}}\left(\pi^{+} \pi^{-}-\pi^{-} \pi^{+}\right)-\sqrt{\frac{1}{12}}\left(\bar{K}^{0} K^{0}-K^{0} \bar{K}^{0}\right)$
						$-\sqrt{\frac{1}{12}}\left(K^{-} K^{+}-K^{+} K^{-}\right)$
			-1	-1	σ_{-}^{-}	$\sqrt{\frac{1}{3}}\left(\pi^{0} \pi^{-}-\pi^{-} \pi^{0}\right)-\sqrt{\frac{1}{6}}\left(K^{-} K^{0}-K^{0} K^{-}\right)$
1^{--}	0	0	0	0	λ_{-}^{0}	$\frac{1}{2}\left(\bar{K}^{0} K^{0}-K^{0} \bar{K}^{0}\right)-\frac{1}{2}\left(K^{-} K^{+}-K^{+} K^{-}\right)$

Table 2. $S U(3)$ multiplets and their composition.

$S U(3)$ multiplet	$J^{P C}$ or J^{P}	Composition
Singlet (1)	even $^{++}$	$q \bar{q}, q \bar{q}+g, q \bar{q}+q \bar{q}$
Symmetric octet $\left(\mathbf{8}_{\mathbf{1}}\right)$	even $^{++}$	$q \bar{q}, q \bar{q}+g, q \bar{q}+q \bar{q}$
Antisymmetric octet $\left(\mathbf{8}_{\mathbf{2}}\right)$	odd $^{--}$	$q \bar{q} q \bar{q}+g, q \bar{q}+q \bar{q}$
Multiplet $\mathbf{2 0}(\mathbf{1 0} \oplus \overline{\mathbf{1 0}})$	odd $^{-}$	$q \bar{q}+q \bar{q}(14$ strange states)
	odd $^{-+}$	$q \bar{q}+q \bar{q}(3$ non-strange states $)$
odd $^{--}$	$q \bar{q}+q \bar{q}(3$ non-strange states)	
Multiplet $\mathbf{2 7}$	even $^{++}$	$q \bar{q}+q \bar{q}$

but finite chance to decay into $\eta^{\prime} \pi$ and the $\pi_{1}(1600)$ to decay into $\eta \pi$. The mixing is, however, not large enough to reverse the experimental observation of a large coupling of the $\pi_{1}(1400)$ to $\eta \pi$ and of the $\pi_{1}(1600)$ to $\eta^{\prime} \pi$.

A system of $\eta \pi$ in a p-wave has been the subject of long-standing investigation by theorists for a number of years. The first reference we are aware of, on this topic, is that of B.-W. Lee et al. [7] who pointed out in 1964 that such a system must necessarily belong to an "icosuplet" (i.e. $\mathbf{1 0} \oplus \overline{\mathbf{1 0}}$). H.J. Lipkin [8] and F.E. Close and H.J. Lipkin [9] pointed out the exotic nature of a $\phi \pi$ and a p wave $\eta \pi$ state in the same vein. For further comments on the p-wave $\eta \pi$ system, the reader is referred to the later articles by different authors [10].

But why does the $\pi_{1}(1400)$ decay into $\eta \pi$? As shown above, the requirement of Bose symmetry, coupled with standard $S U(3)$ isoscalar factors, leads to the conclusion that the p-wave $\eta \pi$ final state is not contained in a flavor octet. We have to use a higher $S U(3)$ representation.

The product of two $S U(3)$ octets breaks up into [11]

$$
\begin{equation*}
\mathbf{8} \otimes \mathbf{8}=\mathbf{2 7} \oplus \mathbf{1 0} \oplus \overline{\mathbf{1 0}} \oplus \mathbf{8}_{\mathbf{1}} \oplus \mathbf{8}_{\mathbf{2}} \oplus \mathbf{1} \tag{2}
\end{equation*}
$$

The 27-plet has even spin only, hence we have to use the $\mathbf{1 0} \oplus \overline{\mathbf{1 0}}$ representation. The appropriate normalized wave functions can be written down using the $S U(3)$ isoscalar factors [11]; the results are tabulated in table 3. One sees that all the wave functions are antisymmetric under the interchange of two states. In order that the Bose symmetrization holds for the entire wave function, one must demand that the spatial symmetry -orbital angular momentum - be odd. We see that a p-wave $\pi \eta$ system must belong to the $\mathbf{1 0} \oplus \overline{\mathbf{1 0}}$ representation.

One notes that the particle names in table 3 are derived from their counterparts in the baryon sector but with lower-case letters. Thus, a $I^{G}\left(J^{P C}\right)=1^{-}\left(1^{-+}\right) \pi_{1}(1400)$ is given the name $\sigma_{+}(1400)$ whereby emphasis is placed on the four-quark nature of the object. A ρ is a generic name for a state with $I^{G}\left(J^{P C}\right)=1^{+}\left(1^{--}\right)$but the name σ_{-}signifies its four-quark character. The counterparts to K^{*} and ω are likewise denoted ξ and λ, respectively.

It can be shown that antisymmetric wave functions (under the interchange of the two particles) occur for the $\mathbf{8}_{2}, \mathbf{1 0}$ and $\overline{\mathbf{1 0}}$ representations, all others being symmetric. It is obvious that a p-wave $\pi \eta$ system belongs to the $\mathbf{1 0} \oplus$ $\overline{\mathbf{1 0}}$ representation, as shown in table 3 .

Let us now discuss the consequences of a assignement of the $\pi_{1}(1400)$ to the $\mathbf{1 0} \oplus \overline{\mathbf{1 0}}$ multiplet.

- The multiplet 20 does not contain an isosinglet. This has to be contrasted to the octet $\pi(1600)$ for which we expect an isosinglet partner $\eta_{1}(1600)$. The $\eta_{1}(1600)$ could be searched for in four-pion final states like $a_{1}(1260)+\pi$ via S-wave or $\pi(1300)+\pi$ via P-wave.
- There are no non-strange mesons with charge 2. A possible $Q= \pm 2$ candidate has been reported in the $\pi \pi$ channel [12] which, if confirmed, would constitute the first example of the multiplet 27 .
- The multiplet 20 contains mesons with strangeness 2. They could be searched for in reactions like

$$
\begin{equation*}
K^{+} p \rightarrow K^{+} K_{S}^{0} \Sigma^{+} \tag{3}
\end{equation*}
$$

The negative strangeness of the Σ^{+}identifies the K_{S}^{0} as K^{0}. The state with strangeness $S=-2$ is much more difficult to find since the $K^{-} K_{S}^{0}$ has a $S=0$ and a $S=2$ component.

Table 3. Multiplet $\mathbf{2 0}(\mathbf{1 0} \oplus \overline{\mathbf{1 0}})$.
a) Strange members.

J^{P}	S	I	I_{3}	Q	Name	Wave functions
1^{-}	+2	0	0	+1	$\bar{\omega}^{+}$	$-\sqrt{\frac{1}{2}}\left(K^{+} K^{0}-K^{0} K^{+}\right)$
1^{-}	+1	$3 / 2$	+3/2	+2	δ^{++}	$\frac{1}{\sqrt{2}}\left(\pi^{+} K^{+}-K^{+} \pi^{+}\right)$
			+1/2	+1	δ^{+}	$\sqrt{\frac{1}{6}}\left(\pi^{+} K^{0}-K^{0} \pi^{+}\right)+\sqrt{\frac{1}{3}}\left(\pi^{0} K^{+}-K^{+} \pi^{0}\right)$
			-1/2	0	δ^{0}	$\sqrt{\frac{1}{3}}\left(\pi^{0} K^{0}-K^{0} \pi^{0}\right)+\sqrt{\frac{1}{6}}\left(\pi^{-} K^{+}-K^{+} \pi^{-}\right)$
			-3/2	-1	δ^{-}	$\frac{1}{\sqrt{2}}\left(\pi^{-} K^{0}-K^{0} \pi^{-}\right)$
1^{-}	+1	1/2	+1/2	+1	$\bar{\xi}^{+}$	$\begin{gathered} -\sqrt{\frac{1}{6}}\left(\pi^{+} K^{0}-K^{0} \pi^{+}\right)+\sqrt{\frac{1}{12}}\left(\pi^{0} K^{+}-K^{+} \pi^{0}\right) \\ +\frac{1}{2}\left(K^{+} \eta-\eta K^{+}\right) \end{gathered}$
			-1/2	0	$\bar{\xi}^{0}$	$\begin{gathered} -\sqrt{\frac{1}{12}}\left(\pi^{0} K^{0}-K^{0} \pi^{0}\right)+\sqrt{\frac{1}{6}}\left(\pi^{-} K^{+}-K^{+} \pi^{-}\right) \\ +\frac{1}{2}\left(K^{0} \eta-\eta K^{0}\right) \end{gathered}$
1^{-}	-1	$1 / 2$	+1/2	0	ξ^{0}	$\begin{gathered} \sqrt{\frac{1}{6}}\left(\pi^{+} K^{-}-K^{-} \pi^{+}\right)-\sqrt{\frac{1}{12}}\left(\pi^{0} \bar{K}^{0}-\bar{K}^{0} \pi^{0}\right) \\ +\frac{1}{2}\left(\bar{K}^{0} \eta-\eta \bar{K}^{0}\right) \end{gathered}$
			-1/2	-1	ξ^{-}	$\begin{gathered} \sqrt{\frac{1}{12}}\left(\pi^{0} K^{-}-K^{-} \pi^{0}\right)-\sqrt{\frac{1}{6}}\left(\pi^{-} \bar{K}^{0}-\bar{K}^{0} \pi^{-}\right) \\ +\frac{1}{2}\left(K^{-} \eta-\eta K^{-}\right) \end{gathered}$
1^{-}	-1	$3 / 2$	+3/2	+1	$\bar{\delta}^{+}$	$\frac{1}{\sqrt{2}}\left(\pi^{+} \bar{K}^{0}-\bar{K}^{0} \pi^{+}\right)$
			+1/2	0	$\bar{\delta}^{0}$	$\sqrt{\frac{1}{6}}\left(\pi^{+} K^{-}-K^{-} \pi^{+}\right)+\sqrt{\frac{1}{3}}\left(\pi^{0} \bar{K}^{0}-\bar{K}^{0} \pi^{0}\right)$
			-1/2	-1	$\bar{\delta}^{-}$	$\sqrt{\frac{1}{3}}\left(\pi^{0} K^{-}-K^{-} \pi^{0}\right)+\sqrt{\frac{1}{6}}\left(\pi^{-} \bar{K}^{0}-\bar{K}^{0} \pi^{-}\right)$
			-3/2	-2	$\bar{\delta}^{--}$	$\frac{1}{\sqrt{2}}\left(\pi^{-} K^{-}-K^{-} \pi^{-}\right)$
1^{-}	-2	0	0	-1	ω^{-}	$\sqrt{\frac{1}{2}}\left(\bar{K}^{0} K^{-}-K^{-} \bar{K}^{0}\right)$

b) Non-strange members.

$J^{P C}$	S	I	I_{3}	Q	Name	Wave functions
1^{-+}	0	1	+1	+1	σ_{+}^{+}	$\frac{1}{\sqrt{2}}\left(\pi^{+} \eta-\eta \pi^{+}\right)$
		0	0	σ_{+}^{0}	$\frac{1}{\sqrt{2}}\left(\pi^{0} \eta-\eta \pi^{0}\right)$	
		-1	-1	σ_{+}^{-}	$\frac{1}{\sqrt{2}}\left(\pi^{-} \eta-\eta \pi^{-}\right)$	
1^{--}	0	1	+1	+1	σ_{-}^{+}	$\sqrt{\frac{1}{6}}\left(\pi^{+} \pi^{0}-\pi^{0} \pi^{+}\right)+\sqrt{\frac{1}{3}}\left(\bar{K}^{0} K^{+}-K^{+} \bar{K}^{0}\right)$
		0	0	σ_{-}^{0}	$\sqrt{\frac{1}{6}}\left(\pi^{+} \pi^{-}-\pi^{-} \pi^{+}\right)+\sqrt{\frac{1}{6}}\left(\bar{K}^{0} K^{0}-K^{0} \bar{K}^{0}\right)$	
		-1	-1	σ_{-}^{-}	$\sqrt{\frac{1}{6}}\left(\pi^{0} \pi^{-}-\pi^{-} \pi^{0}\right)+\sqrt{\frac{1}{3}}\left(K^{-} K^{0}-K^{0} K^{-}\right)$	

- The multiplet 20 contains strange mesons with isospin $3 / 2$. The maximal third component has $I_{3}=3 / 2$ and mesons with 2 units of charge are supposed to exist. The search for such particles again requires K^{+}beams

$$
\begin{equation*}
K^{+} p \rightarrow K^{+} \pi^{+} \Lambda \tag{4}
\end{equation*}
$$

We conclude that -in the limit in which the η is a pure $S U(3)$ octet and the η^{\prime} is a pure singlet, and assuming
that flavor $S U(3)$ is conserved in the decay - the exotic $\pi_{1}(1400)$ state with quantum numbers $I^{G}\left(J^{P C}\right)=$ $1^{-}\left(1^{-+}\right)$and seen to decay into $\eta \pi$ and not into $\eta^{\prime} \pi$ must be a four-quark state belonging to the multiplet 20, a $\mathbf{1 0} \oplus \overline{\mathbf{1 0}}$ representation of flavor $S U(3)$, because of the requirement of Bose symmetrization on a p-wave $\pi \eta$ system. The $\pi_{1}(1600)$ is seen to decay primarily into $\eta^{\prime} \pi$ and not into $\eta \pi$. This state must belong to an $S U(3)$ octet and
could thus be an exotic meson with a valence gluon in it, i.e. $(q \bar{q}+g)$, although it could just as well be a four-quark state. A verification of new meson configuratons, in particular the verification of mesons in $S U(3)$ decuplets requires an intense positively charged kaon beam. Such experiments could be carried out at the RF-separated $K^{ \pm}$beam currently at IHEP/Protvino, the 50 GeV Japan Hadron Facility at KEK or at the GSI-SIS200 project.

Achasov and Shestakov [13] have recently worked out the nature of exotic resonances with $I^{G}\left(J^{P C}\right)=1^{-}\left(1^{-+}\right)$ in the process $\rho \pi \rightarrow \eta \pi$. They derived a set of unitarized and analytic amplitudes for the process in which the s-channel loop diagrams contain the intermediate states $\rho \pi, \eta \pi, \eta^{\prime} \pi$ and $K^{*} \bar{K}+\bar{K}^{*} K$. They considered both $\pi_{1}(1400)$ and $\pi_{1}(1600)$ in their model and found that an exotic state coupling to $\eta \pi$ must belong to the $\mathbf{1 0} \oplus \overline{\mathbf{1 0}}$ representation of flavor $S U(3)$. However, their model requires a decay mode $\pi_{1}(1400) \rightarrow \rho \pi$. We note that - experimentally - the $\pi_{1}(1400)$ is seen only in the $\eta \pi$-decay channel. If the ρ exchange is absent in the reaction $\pi^{-} p \rightarrow \pi_{1}^{0}(1400) n$, then it can proceed only via $b_{1}(1235)$ - and $\rho_{2}(1700)$-reggeon [14] exchanges. So the intensity of the $\pi_{1}^{0}(1400)$ production falls off as $1 / s$ in comparison to that of the $a_{2}^{0}(1320)$ production. Let R be the ratio of the cross-section for $\pi^{-} p \rightarrow \pi_{1}^{0}(1400) n$ to that for $\pi^{-} p \rightarrow a_{2}^{0}(1320) n$. Then the suggested model predicts

$$
\begin{align*}
R(\mathrm{KEK}): & R(\mathrm{BNL}): R(\mathrm{IHEP}): R(\mathrm{CERN})= \\
& 2.7: 1.0: 0.49: 0.18 \tag{5}
\end{align*}
$$

Here the relevant center-of-mass energy squared (s) corresponds to the $\pi^{-} p$ interactions at $6.3 \mathrm{GeV} / c$ (KEK [15]), $18 \mathrm{GeV} / c$ (BNL [1]), $37 \mathrm{GeV} / c$ (IHEP/Protvino [3]) and $100 \mathrm{GeV} / c$ (CERN [16]). Unfortunately, not all of the requisite cross-sections are known experimentally.
S.U. Chung is indebted to T.L. Trueman for enlightening discussions and to H.J. Willutzki (now deceased) for his helpful comments during an early phase in the preparation of this paper.

References

1. D.R. Thompson et al., Phys. Rev. Lett. 79, 1630 (1997); S.U. Chung et al., Phys. Rev. D 60, 092001 (1999).
2. A. Abele et al., Phys. Lett. B 423, 175 (1998); 446, 349 (1999).
3. G.M. Beladidze et al., Phys. Lett. B 313, 276 (1993).
4. A. Zaitsev, in Proceedings of the Eighth International Conference on Hadron Spectroscopy, Beijing, China, 1999, edited by W.G. Li, Y.Z. Huang, B.S. Zou, Nucl. Phys. A 675, 155c (2000).
5. E. Ivanov et al., Phys. Rev. Lett. 86, 3977 (2001).
6. Our definition is somewhat at variance from the usual convention used for, e.g., u and d quarks. The reader may wish to consult S.U. Chung, C - and G-parity: A New Definition and Applications (Version III), on the website http://130.199.22.118/reviews.html. For a non-trivial application, the reader may wish to consult S.U. Chung, Analysis of $K \bar{K} \pi$ Systems, at the same website.
7. B.-W. Lee, S. Okubo, J. Schechter, Phys. Rev. 135, B219 (1964).
8. H.J. Lipkin, in Proceedings of the Second International Conference on Hadron Spectroscopy, KEK, Japan, 1987, edited by Y. Oyanagi et al., KEK report, KEK-87-7 (1987) p. 363.
9. F.E. Close, H.J. Lipkin, Phys. Lett. 196, 245 (1987).
10. F. Iddir et al., in Proceedings of Symmetry Violations in Subatomic Physics, Kinston, UK, 1988 (World Scientific, Singapore, 1989) p. 130; Phys. Lett. B 205, 564 (1988); 207, 325 (1988); J.M. Frère, S. Titard, Phys. Lett. B 214, 463 (1988).
11. J.J. de Swart, Rev. Mod. Phys. 35, 916 (1963).
12. A. Filippi et al., Phys. Lett. B 495, 284 (2000).
13. N.N. Achasov, G.N. Shestakov, Phys. Rev. D 63, 014017 (2000).
14. This trajectory corresponds to the meson $\rho_{2}(1700)\left[1^{3} D_{2}\right]$, not established experimentally but expected in the quark model (see, S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985)). It lies "one level" below the leading ρ trajectory which corresponds to the mesons $\rho(770)$ and $\rho_{3}(1690)$.
15. H. Aoyagi et al., Phys. Lett. B 314, 246 (1993).
16. D. Alde et al., Phys. Lett. B 205, 397 (1988).

[^0]: ${ }^{\text {a }}$ e-mail: klempt@iskp.uni-bonn.de
 ${ }^{\mathrm{b}}$ S.U. Chung is under contract number DE-AC0276 CH 00016 with the U.S. Department of Energy.

